

Pipe selection guide

Disclaimer

UNLESS SPECIFICALLY AGREED TO IN WRITING, ECOINNOVATION LIMITED:
(a) MAKES NO WARRANTY AS TO THE ACCURACY, SUFFICIENCY OR

SUITABILITY OF ANY TECHNICAL OR OTHER INFORMATION PROVIDED IN ITS DOCUMENTATION.
(b) ASSUMES NO RESPONSIBILITY OR LIABILITY FOR LOSS OR DAMAGE, WHETHER DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL, WHICH MIGHT ARISE OUT OF THE USE OF SUCH INFORMATION. THE USE OF ANY SUCH INFORMATION WILL BE ENTIRELY AT THE USER'S RISK.

Notice of Copyright

A PowerSpout Document
Copyright © 2018 All rights reserved
Notice of Trademark
PowerSpout - is a USA registered Trademark

Notice of Company Registration

EcoInnovation - is a NZ Registered Limited Company

Revisions history

1.0 Edited by H.P. July 2018
1.1 Revised by M.L. Nov 2018 with PVC pipe sizing Annex

Advert in New Zealand, July 2018 from Rural Direct

Introduction

Whether you are hoping to generate 100 W or $10,000 \mathrm{~W}$ with a PowerSpout hydro turbine(s), the supply pipe (or "penstock") is often the most costly item in the budget.

This guide discusses various pipe options that may be available. Every location has different local options for supply, but there are some globally available pipe sizes and specifications too. The final choice is always your decision, taking account of the size, cost, longevity, local availability and accessibility of the site.

Some basic concepts

Pipe diameter

Every pipe has an outer (or overall) diameter and an inner diameter (or bore).

Often the fittings will connect on the outside, and so the pipe will be named according to the O.D. and sold in a range of wall thicknesses for this standard O.D.
"SDR" is the nominal ratio of outside diameter to wall thickness.

For calculating the headloss (pressure drop) and hence the efficiency of the pipe on your site you will need to use the internal diameter
 or I.D. in our calculation tools. Note our tool always assumes a new smooth bore plastic pipe when calculating friction loss.

Pipes that are rated for higher pressure will have thicker walls and smaller I.D.s which in turn leads to more pipe friction and pressure loss and hence lower pipe efficiency.

Pressure ratings

Pressure is measured in feet of head or in bar or in Pounds per Square Inch.

- As a rough guide we can say that 10 m of vertical head creates 1 bar water pressure, although strictly we should say $9.8 \mathrm{~m}=1 \mathrm{bar}$.
- 1 bar also equals 14.5 PSI.
- Maximum site pipe pressure for a PowerSpout PLT site will be 16bar, which is 157 m head or 232 PSI.

We also need to consider surge pressure (also called water hammer) that occurs when the valves are closed and the momentum of the flow is stopped. Many pipe materials can withstand significant short duration pressure surges.

Higher-pressure pipes are generally good, except that they cost more, are heavier, and have smaller internal diameter.

Materials

PowerSpout turbines will normally use plastic pipes．The commonest materials are Polyethylene（PE）or polyvinyl chloride（PVC）．These have very similar friction properties so they can be used in the Advanced Calculator to predict performance．GRP will also have similar friction characteristics．Other materials such as steel，asbestos，etc may have higher friction and this may increase more with aging．Hence our calculation tool may only give approximate results when use with such pipes．

PE pipe comes in various densities that reflect the strength of the plastic，so Low density LDPE is only suitable for low pressure，Medium density MDPE is stronger for the same wall thickness and High density HDPE can withstand higher pressure with thinner walls and larger internal diameter．

Here is a useful table of properties of MDPE（＝PE80）and HDPE（＝PE100）at various SDR（ratio of OD to wall）．

SDR	41	33	26	21	17	13.6	11	9	7.4
PE80	PN3．2	PN4	-	PN6．3	PN8	PN10	PN12．5	PN16	PN20
PE100	PN4	-	PN6．3	PN8	PN10	PN12．5	PN16	PN20	PN25

（The PN is the working pressure rating in bar．）
Say for example we want to use 90 mm HDPE pipe at 16 bar ． PE100 with SDR11 is shown above to be PN16．So the SDR we need is 11. Wall thickness will be $90 / 11=8.2 \mathrm{~mm}$ and therefore the pipe ID will be $90-$ （2x8．2）$=73-74 \mathrm{~mm}$ approximately．
See also the table below where 73mm ID is quoted．

PE PRESSURE PIPE SPECIFICATION ACCORDING TO AS／NZS 4130 M MATRIX																									
1011		41			33			28			21			7			126			11			0		508
$\left\lvert\, \begin{aligned} & \text { man } \\ & \text { Non } \end{aligned}\right.$		12			4			＊			63			3			5			185			4		$\begin{aligned} & \text { Whan } \\ & \text { Fise } \end{aligned}$
$\left\lvert\, \begin{aligned} & \text { Wivo } \\ & \text { Noion } \end{aligned}\right.$		4			\checkmark			c．			4			＊			45			＊			0		$\begin{aligned} & \text { Whe } \\ & \text { weob } \end{aligned}$
80	$\begin{aligned} & \text { Wen } \\ & \text { Wen } \end{aligned}$	wise	he	$\begin{aligned} & \text { Un } \\ & \text { max } \end{aligned}$	Wer	Seve	\sin	hem	$\stackrel{1}{3}$	Nan	Unan \circ	he	$\begin{aligned} & \text { Hen } \\ & \hline 0 \end{aligned}$	ther	En	$\begin{aligned} & \text { un } \\ & \text { wen } \end{aligned}$	Mean is	2	in	Eun	hes	$\frac{4 n}{m a n}$	sterse	Ans	0 0n
\cdots																			ten	$4 \times$	casa	408	a3n	4－ase	4
n																ten	4＊s	some	tse	＊i＊	axa	43	＊15	\％us	\％
in													vee	Ans	dort	tan	2if	a／as	2in	207	4 mm	3st	mit	e：sis	24
\square										tes	2ine	816\％	1 me	20 $=$	amos	148	26x	－205	200	2as	Q2me	1as	2 at	8 \％an	18
$*$										（9）	3 E		121	Tive	（emmi	nim	2n＊	＊Mes	3 ＊	ax	exum	458	Wes	＊ins	4
E										1 1ill	an	cuasu	10：	cast	satse	2x	asat	astes	tain	ces	－exs	Le	18．818	2\％	\pm
4							s＊	＊＊＊	\＃＊9＊	ม⿴囗十	mem	＊＊＊	18：	＊－10	shi＊	＊${ }^{4}$	＊as	＊＊＊＊	401	wain	ง⿵冂＊	\％	4 min	uns	4
n				230	¢．	8＊159	130	505	10x\％	tain	Enit	6n60	csir	Eth	tums	580	แus	Live	smin	san	14 A	＊＊ 0	s\％13	tres	n
＊it				100	Qill	－8．ay	¢	Has	ULent	4 isi	ขละ	çay	se：	3．08	เงสை	cee	4 me	\％ria	\＆	73in	1240	5\％	5as	aveen	ini
\％	\pm \％	Emm		Ten	ти／	Tme	410	mis	1 Als	48	－nat	1amb	＊＊	＊＊30	pres	＊8	53s	zeses	Emb	5xs		4＝	＊is	\％avs	\cdots
14	14	＝ 7	czu4	in	men	10m	4．3n	mee	cais	＊＊	－10	Lixat	\％e	上ex	3xis	क	Nav	16）	＊es	如m	amia	日 00	new	s）	5
140	is	bin	ther	43	ine	Lsan	$3+6$	Cas	1104	4.8	acas	2800	8：	－ 4 an	3ame	sw	Heas	4．ane	4x	nast	tien	＊${ }_{\text {W }}$	atse	820\％	＊
m	Liw	W．at	دส®	40	xax	2400	s．a	wes	د－8＊	40	\％4＊	sme	＊＊	мist	＊NE0	ten	usk	2 sest	4．w	19＊w	＊＊＊＊	aw	ивіх	sway	\pm
19，	40	thas	Inen	sm	เาะ	3anes	480	－83	180\％	46	1425	4／ens	\％成	Hen	Smbe	迷	\＃15	тess	\＄60	148．34	＊＊＊	men	пen	mame	n
300	＊ion	fise	лиян	cas	（im	stion	m	－180	－\1i	sm	mas	sam	H3：	man	ine	（18）	＊ง10	smat	mon	nave	＊อ14	3＊＊	van	unam	3 m
2a	3as	2x．30	3aves	438	2wis	480w	4 as	3815	13a4	4．ay	มinz	Teum	a4：	tuse	stes	Sas	mas	naws		13as	baus	ze	atis	caus	315
H2	＊）	มı\％	¢＊＊＊	\％10	วun	swep．	＊＊＊	1mat	1004	min	Ex	＊amm	un	गпn	N1＊＊	＊＊＊	men	weat	सa＊	mat	＊＊＊＊	गrem	тee	anae	me
mis	430	naw	sasar	＊int	mam	tenin	40	200	Bam	日＊	ти\％	\＃＊＊	Hen	2003	困为	nas	23＊0	unss	200	यis	गum	nn	2nes	2＜	2 E
in	P		14019	IT8	201＊	＊mas	4 s	т	คท	Nam	\％erat	Hisee	an	2 H （1）	tine	1ix	20：	дtate	ame	max	2xum	Wal	14．n	мuma	m
－ 4	＊＊	戒：	＊＊e\％	\％	\％u6e	＂tsie	43s	stas	uner	＝wi	Lina	4．300	\％	j $\mathrm{m}_{\text {\％}}$	4tses	Nis	Eise	214\％	4ab	2ense	nses	new	＊3 $=$	\％＊＊	ns
tatit	timi	ти\％	paas	थ．${ }^{\text {a }}$	Intit	Hemer	E！		arst	as	\％ern	mase	ม）	Wes	18＊5s	36 nt	－	sentit	mim	13tia	axits	सगा	3atain	Aasma	ates
0	sam	tan	\％ases	\％${ }^{\text {a }}$	6ins	Bnos	1tay	$48 \times$	Bume	\％e9	4045	A＊＊＊s	ग\％${ }^{\text {\％}}$	\％n	¢	＊ 8	788 88	enome	4080	2esis	sum	Exam	1408	esen	50
time	日为	－⿺𠃊⿻丷木斤丶	＊17＊	Tis	Wix	zivme	\％	－1m	zven！	130	הin	Mima	2＊iii	＊｜${ }^{\text {¢ }}$	\％	य\％	exat	5ims	ise	，\＃ik n	esten	3n mi	106\％	Tame	ine
5as	4 H	S170	30204	Hein	sais	2anuse	210	5inut	3esost	xas	nekin	nsame	มมว	64isan	\＄5．4n	cus	4tsa	cajist	sas	2x5	2\％＊5x				Ses
± 0	Nay	－ía	mine	＊	w－1	Wer	ise	＊＊139	＊＊wn	mas	seens	＊vape	Ma	＊＊＊		＊．）	＊iset	mast	bay	win	weas				0 N
\％	Hes	＊＊$=1$	senes？	Han	catw	Etame	Etim	＊＊sw	\％evis	2300	sun	num	450	siter	nam：	438	sis 5	wetiant							me
${ }^{30}$	4en	каз	aives	38 道	740	dis une	3eas	m930	name	3til	Fide	Nasse	（1）：	ma ${ }^{\text {a }}$		30\％	（axas	וsentiil							nes
niiis	210	6 Em	sumb	椇	5468	5＊＊in	IFEE	bites	Exzme	ass	unsi	mesine	Satim	\＄0．5s	musum										ase
1000	ite	mam	＊－	103m	＊eem	nenob	sem	84\％	menoe	ato	Wein	İtinif		＊ทan	v9inse										1008

Pipe options

Corrugated single wall PE pipe

This pipe is typically used on farms for field drains, it is low cost hence we see many clients keen to use this pipe. The corrugated inside surface makes calculating friction loss difficult and uncertain. The main issue is how to join them and what is the pressure rating. In recent years single wall pipe has been significantly displaced by double wall. We are not aware of any clients using this type of pipe for hydro turbines despite many requests seeking our advice over
 the years. If you have tried such pipe and it has worked well please contact us.

Corrugated twin wall PE pipe

We get many new clients asking about this pipe. It has a smooth inner bore (unlike single wall above), and the price is reasonable.

The main issue is how to join the lengths together, and what is the pressure rating. We have seen them used to great effect for supply pipe flumes for PowerSpout LH turbines, but to our knowledge no client has used them in pressure applications for say a PowerSpout TRG or
 PLT turbine. If you have tried such pipe and it has worked well please contact us.

Outside Diameter	Inside Diameter	\$NZ/m approx.
110	95	12
160	137	18.33
230	195	23.33
250	225	46.67
333	290	64.17

Culvert Pipe (made from recycled HDPE)

This pipe is robust and UV resistant. It is ideal for PowerSpout turbines for sites up to 30 m head. It is best joined with a PE pipe welding machine which can be difficult if you do not have one.

These PE culvert grade pipes are not pressure-rated pipes but will be fine for up to 30 m static heads.

Outside Diameter	Inside Diameter	\$NZ/m approx.
110	102	From 10.00
160	149	From 13.00
200	186	14.35
250	232	19.56
315	293	32.61
375	349	44.20
450	419	61.59

PVC Culvert Pipe (made from new and recycled PVC)

This pipe often has no formal pressure rating, but is good for up to 30 m heads. It glues together, so have a low joining cost compared with large PE pipes. The sizes below are also common (in NZ) sizes for Chinese PVC waste and pressure pipe, so large fittings can be purchased cost effectively if needed.

Outside Diameter	Inside Diameter	\$NZ/m approx.
110	102	6.09 to 13.28
160	152	13.44 to 26.87
200	190	35.44
250	232	41.35
315	293	84

Pressure Grade Pipe in LDPE, MDPE and HDPE

PE ID 50mm pipe (57 mm OD)

There is a common LDPE pipe made is NZ with a 50 mm ID from $\$ 3.72 \mathrm{NZ} / \mathrm{m}$ and only rated for 50 PSI (35 m head). You can see it advertised above. The same pipe is available in a higher grade PE for 70 m head (called Enduroflex by Marley).

For sites with heads above 70 m then you need to look at pipes sized according to their OD. The above PE pipes can be used for the first 35 m and 70 m of fall respectively.

PE OD pipe sizes

PE pipes are common globally and supplied in 50 or 100 m rolls and shorter straight lengths. They have common OD sizes that can be connected via standard external joiners:

- 63 mm
- 75 mm
- 90 mm
- 110 mm

They are available in wide range of PE grades and wall thicknesses.

63 mm OD PE pipe

This pipe is common in 9 bar (90 m rated) with 55 mm ID and 12.5 bar (120 m rated) with a 53 mm ID.

Drag hose

Drag hose is a specifically designed PE pipe available in 63 and 75 mm outside diameter. This pipe is designed to be flexible with a thick wall to resist abrasion while towing. It has 6 bar (60 m) pressure rating at a similar cost to the 50 mm ID LDPE but has a larger ID.

Effluent pipe

Effluent Pipe is manufactured from MDPE and is typically rated for 8 bar (80 m).

- 75 mm OD 66 mm ID
- 90 mm OD 79 mm ID
- 110 mm OD 96 mm ID

In general the above PE pipes are very cost effective as they are mass produced for farmers.

HPDE pipes

All the above are also available in 16 bar (160m) HDPE pipe, but the cost can increase quickly due to the thicker wall and lower volumes produced.
We are not that interested in pipes above 16 bar rating as this is the static pressure limit of our PowerSpout PLT turbine.

Surplus pipe options

Surplus pipe is surprisingly common if you are not in a rush to locate it. Some examples include:

- PE pipe surplus from fish farms in Scotland
- Fire hose pipe - example link

We do not advise fire hose because we do not believe that it will last long enough, and it is prone to kinks.

Surplus PVC

We have also had a number of clients who have secured larger PVC pipes that were used as floating booms on large hydro lakes. These booms are used to stop floating logs from jamming up against the intake screens. These large intakes will have automatic rake cleaners which can be damaged if they become entangled with the branches of a large floating tree - hence the need for the PVC boom.

The booms are often replaced every 10 years as they get weakened with UV light exposure. You can often get them for free if you know where to look. Due to UV weakening they will only be suitable for lower head sites.

Surplus steel pipes

A quick search on the internet (whilst writing this article) in NZ located secondhand 100 mm ID galvanised steel pipe (rated for 400 m head) for $\$ 45 \mathrm{NZ}$ per 6.5 m lengths, within 15 km of our base, with bolt joiners available.

The same company was also offering 160mm ID
 galvanised steel pipe for $\$ 67$ per 6 m length. 300 m head rated.

Steel is heavy, but for sites that have good access for lifting equipment to position them and if the price is good - then why not?

Galvanized pipes will only last about 20 years before they rust out unless some of the electrical generation is used to provide cathodic protection via a DC power supply. Such surplus steel pipe are great if you are planning a small hydro with more than 160 m head, but as PowerSpout turbines are only approved for sites under 160 m head we do not see many clients using steel pipes.

Most clients living in remote locations will not be able to secure surplus pipe locally, so they will have to buy new pipe. The cost of moving surplus pipe large distances is prohibitively costly.

Transporting pipes

Site access considerations are critical before making a final decision about which pipe to use. We have become involved with many very remote installations over the years. Some have had no choice but to hand-carry all the equipment and pipe needed through dense forest for many km, as no vehicle access was possible.

The strength, flexibility and long-term durability offered by polyethylene pipe have seen it become the material of choice for a wide range of hydro applications.

For remote low head sites short lengths of large PE pipe are carried in and fusion welded together. On higher head sites 50 or 100 m rolls of smaller diameter pipe are carried on site and joined with pipe joiners. 100 m rolls of 110 mm PE pipe can weight up to 380 kg each, you can only move it by hand if it is unrolled and carried in as shown opposite.

Example: remote location high

 head village siteFor very remote locations in the 310 kW class (remote village power) where there are falls of up to 160 m utilizing smaller PE pipes there can these disadvantages:

- High shipping bulk - as 100 m rolls of pipe are mainly air
- High roll mass makes manual handling difficult (7-10 people needed to move 1 roll)
- Rolls often do not fit into a standard shipping container (2.4 m high) and where they do fit into a high-cube container (2.7 m high) you cannot fit in many 100 m rolls (normally 8)

PE pipes have some advantages, being flexible, resilient, and UV resistant.
But often in such situations, PVC pipe can be a better option with these advantages:

- Often lower cost than PE pipe of the same size and pressure rating
- Larger inside diameter for same OD (as PVC is stronger than HDPE)
- 5.5 m lengths will fit in a standard shipping container
- Available in many pressure grades; Culvert grade $<30 \mathrm{~m},<63 \mathrm{~m},<80 \mathrm{~m}$, $<100 \mathrm{~m},<125 \mathrm{~m},<160 \mathrm{~m}$ and $<250 \mathrm{~m}$
- Available in OD sizes; $63,75,90,110,125,140,160,180,200$ and larger
- You can design a solution for a site starting with say low pressure 110 mm pipe and then convert to high pressure 90 mm pipe that fits inside the 110 m for cost effective transportation.
- Standard PVC fittings are normally rated for 160 m head. They are common and low-cost compared to PE pipe fittings

If logistical costs are high and local labour costs are free (often part of the deal in getting power for the first time to remote villages) then PVC can be much more cost effective. If it can be buried or covered to keep off $U V$, it will then last almost as long as PE pipe (typically 50+ years).

Example with specific numbers

For example, say we need 2500 m of 110 mm OD PE pipe for a job with 160 m of static head and a flow rate of $7 \mathrm{l} / \mathrm{s}$.

PE pipe options

Rating	Wall thickness	Pipe ID	$\mathrm{kg} / 100 \mathrm{~m}$ roll
PN4	3.9	102.2	116
PN5	4.9	100.2	145
PN6.3	6.0	98.0	177
PN8	7.4	95.2	216
PN10	9.1	91.8	262
PN12.5	11.1	87.8	311
PN16	13.7	82.6	378

https://www.marley.co.nz/wp-content/uploads/2016/04/Marley-
Polyethylene-Manual.pdf
PVC Pipe options

Rating	Wall thickness	Pipe ID	$\mathrm{kg} / 5.5 \mathrm{~m}$ length
PN6.3	2.7	104.6	7.3
PN8	3.4	103.2	9.1
PN1.0	4.2	101.6	11.1
PN1.25	5.3	99.4	13.9
PN1.6	6.6	96.8	17.1

Pipe data from www.xiongsu.cn
As PVC has higher tensile strength than PE, the PVC pipe will have thinner walls, and so it can generate more power due to reduced pipe friction loss.

To keep this example simple, let's assume the average pipe ID is 92 mm .
3 x PLT HP turbines can do 4.8 kW on $7.0 \mathrm{l} / \mathrm{s}$.
Click here to view this example in the calculator.

PE pipe:

$25 \times 110 \mathrm{~mm}$ OD 100m rolls of PE pipe of 7 grades with a mass of almost 6 tonnes. This will require about 3 shipping containers if these larger rolls will fit in a high-cube.

PVC pipe:

460 lengths (5 spares) at $5.5 \mathrm{~m} \times 110 \mathrm{~mm}$ OD of PVC pipe of 5 grades with a mass of almost 5.5 tonnes.
All of this PVC pipe will fit into 1 shipping container with sufficient spare room for all the PVC fittings needed.

Note. PE pipes can also be purchased in lengths that will fit into a standard $20 \mathrm{ft}(<5.9 \mathrm{~m}$) or $40 \mathrm{ft}(<12.1 \mathrm{~m}$) shipping container. In such cases it is likely that portable fusion
 welding (powered by a small generator set) will be more cost
effective than having to purchase hundreds of costly PE pipe joiners.

PVC Pipe installation advice

All pipes must be laid on a descending grade to avoid high points where air can get trapped. Having a large vertical air riser soon after the intake can be helpful in allowing air bubbles to escape. Air bubbles are often drawn in via turbulence at the intake and will soon settle to the top of the pipe where they can be vented with a short vertical riser pipe.

The image opposite shows a timber support bridge for a 160 mm PVC culvert pipe supplying $2 \times$ TRG turbines. The process involves digging shallow cuttings to bury the pipe through high points and timber support bridges at low points. You cannot eliminate every pipe high/low point but you can greatly reduce the number of vents that may be needed
 later. Imagine you a installing a train track from the intake to the turbine and you will not go far wrong.

Shallow dips in the ground can be filled using rocks (from the nearby stream as shown opposite). In this way the pipe meanders along the river bank (above maximum flood level) avoiding:

- large trees
- large rocks (small ones can be winched out of the way)
- steep banks
- high ground
- low ground

Avoidance is not always possible, so attempt to
 minimize the number of cuttings, bends and support structures that you will need to make.

Installing large PVC pipes

Some tips:

- 1 large glue pot per person.
- Clean all surfaces to be glued.
- Liberal application of PVC glue to both mating surfaces.
- Work quickly - you may need to practice first.

- Push pipe fully home.
- Have paper towels handy to clean up excess glue.
- Wear gloves - you do not have time with large pipes to avoid contact with the glue.

Some tips on bending (to avoid obstacles):

- Place a heat shield on the compression (inner) side of the pipe bend.
- Heat the tension (outer) side of bend evenly and slowly with a heat gun or LPG gas torch.
- Bend no more than 10 degrees.
- Cool with water to set the bend.

Some tips on strapping at the joins and securing against floods:

- Often the pipe joins (fittings or socket ends) create a bulge that you can take advantage of to restrain the pipe from slipping down the hill or being washed down the stream bed during floods.
- Where you have a 5 mm step at the join, you can use stainless builders strap and secure with dyna bolts to rocks either side of the pipe or drive in steel pegs.
- You can also use short screws to attach the strap to the PVC at the 10 mm thick joins.

Crossing water ways

In this example a 200 mm PVC culvert pipe had to cross the river. At the crossing point the PVC pipe was flanged and joined to a steel pipe bridge. This is a costly undertaking, avoid pipe crossings if possible. A lower cost method is to make a small cable suspension bridge.

Avoid unnecessary bends

With good route planning you can avoid unnecessary pipe connections like this. Use heat setting to align the pipes and avoid the need for large bends and specially made fittings. This increases friction loss, air entrapment and costs.

Connecting to several turbines via a manifold

For more details of manifold connections read our manifold guide.

International jobs using PVC pipe

It is not uncommon for us to supply both the turbine(s) and manifold connections to international destinations. The advice in the Annex that follows will help in your understanding of PVC pipe sizing where PVC parts are arriving from several countries.

Annex I: Common PVC pipe sizes

The tables will assist in the understanding of the PVC pipe sizes available in your country. Countries that have sizes very similar to each other are shown colored the same so they are easy to spot.

NZ PVC culvert pipe sizes (not pressure rated but suitable for up to 30 m head)

OD of pipe	Culvert grade Wall mm	ID pipe mm
90	2.4	85
110	3	104
160	4.3	151
200	5	190
250	6.5	237
315	8.2	299
400	10.3	379

Note that fittings for NZ culvert grades match well with fittings for Chinese pressure pipe.

NZ PVC pressure pipe sizes

OD of pipe	PN6 Wall mm	PN6 pipe mm	PN9 Wall mm	PN9 pipe mm	PN12 Wall mm	PN12 pipe mm	PN15 Wall mm	PN15 pipe mm	PN18 Wall mm	PN18 pipe mm	NB
48.3	1.7	44.9	2.1	44.1	2.8	42.7	3.4	41.5	3.9	40.5	40
60.4	1.8	56.8	2.6	55.2	3.4	53.6	4.1	52.2	5.0	50.4	50
75.4	2.2	71.0	3.3	68.8	4.2	67.0	5.2	65.0	6.1	63.2	65
88.9	2.6	83.7	3.8	81.3	5.0	78.9	6.1	76.7	7.2	74.5	80
114.3	3.3	107.7	4.9	104.5	6.3	101.7	7.8	98.7	9.2	95.9	100
140.2	4.0	132.2	5.9	128.4	7.7	124.8	9.5	121.2	11.3	117.6	125
160.3	4.5	151.3	6.7	146.9	8.8	142.7	10.8	138.7	12.8	134.7	150
225.3	5.8	213.7	8.4	208.5	11.1	203.1	13.7	197.9	16.2	192.9	200
250.4	6.4	237.6	9.4	231.6	12.3	225.8	15.2	220.0	18.0	214.4	225
280.4	7.1	266.2	10.5	259.4	13.8	252.8	17.0	246.4	20.2	240.0	250
315.5	8.0	299.5	11.8	291.9	15.5	284.5	19.1	277.3	22.7	270.1	300
400.5	10.1	380.3	14.9	370.7	19.7	361.1	24.3	351.9	28.9	342.7	375

NB refers to nominal bore which is the approximate inside diameter of the pipe series

Pipe selection guide

China PVC pressure pipe sizes

OD of pipe	$\begin{aligned} & 0.63 \mathrm{Mpa} \\ & \text { Wall mm } \end{aligned}$	$0.63 \mathrm{Mpa}$ ID pipe mm	0.8 Mpa Wall mm	$0.8 \mathrm{Mpa}$ ID pipe mm	1.0 Mpa Wall mm	1.0 Mpa ID pipe mm	1.25 Mpa Wall mm	1.25 Mpa ID pipe mm	1.6 Mpa Wall mm	1.6 Mpa ID pipe mm	$\begin{array}{r} 2.0 \mathrm{MPA} \\ \text { Wall mm } \\ \hline \end{array}$	2.0 Mpa ID pipe mm	2.5 MPA Wall mm	2.5 Mpa ID pipe mm
50	2.0	46.0	2.2	45.6	2.4	45.2	3.0	44.0	3.7	42.6	4.6	40.8	5.6	38.8
63	2.0	59.0	2.5	58.0	3.0	57.0	3.8	55.4	4.7	53.6	5.8	51.4	7.1	48.8
75	2.3	70.4	2.9	69.2	3.6	67.8	4.5	66.0	5.6	63.8	6.9	61.2	8.4	
90	2.8	84.4	3.5	83.0	4.3	81.4	5.4	79.2	6.7	76.6	8.2	73.6	10.1	69.8
110	2.7	104.6	3.4	103.2	4.2	101.6	5.3	99.4	6.6	96.8	8.1	93.8	14.6	80.8
160	4.0	152.0	4.9	150.2	6.2	147.6	7.7	144.6	9.5	141.0	11.8	136.4	18.2	123.6
200	4.9	190.2	6.2	187.6	7.7	184.6	9.6	180.8	11.9	176.2	14.8	170.4		
250	6.2	237.6	7.7	234.6	9.6	230.8	11.9	226.2	14.9	220.2				
315	7.7	299.6	9.7	295.6	12.1	290.8	15.0	285.0	18.7	277.6				
355	8.7	337.6	10.9	333.2	13.6	327.8	16.9	321.2	21.1	312.8				
400	9.8	380.4	12.3	375.4	15.3	369.4	19.1	361.8	23.7	352.6				

Pipe selection guide

USA PVC pressure pipe sizes

OD of Pipe		Schedule 40 Pipe ID mm	Schedule 80 Pipe ID mm	OD of pipe	
48.3	40.4	37.5	1.9	Schedule 40 Pipe ID inch	Schedule 80 Pipe ID inch
60.3	52.0	48.6	2.4	1.6	1.5
73.0	62.1	58.2	2.9	2.0	1.9
88.9	77.3	72.7	3.5	3.0	2.3
101.6	89.4	84.5	4.0	3.5	2.9
114.3	101.5	96.2	4.5	4.0	3.3
141.3	127.4	121.1	5.6	5.0	3.8
168.3	153.2	145.0	6.6	6.0	4.8
219.1	201.7	192.2	8.6	7.9	7.6
273.1	253.4	241.1	10.8	10.0	9.5
323.9	302.0	286.9	12.8	11.9	11.3
355.6	332.1	315.2	14.0	13.1	12.4
406.4	379.5	361.0	16.0	14.9	14.2
457.2	426.9	406.8	18.0	16.8	16.0
508.0	476.1	452.5	20.0	18.7	17.8
609.6	572.6	544.0	24.0	22.5	21.4

Provided in metric and imperial

